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1. Introduction

11.1 Reasons for using deep networks

= Increase in performance of recognition systems due to the introduction of deep architectures for representation learning

and classification;

= Crucial Properties of Deep Networks:
Larger number of layers as compared to classical networks;
Architectural modifications — rectified linear activations (ReLUSs);
Availability of massive datasets: ImageNet + efficient GPU computing hardware;
= Deeper architectures capture better invariant properties of the data comparing to shallow networks;

= Ability to generalize from a small number of training examples.



1. Introduction

O 1.2 Properties of Deep Neural Networks
= Design of Deep Neural Networks: Approximate arbitrary functions of the input
Neural Networks with a single hidden layer and sigmoid activations => universal function approximators

= Statistical Learning Theory: Number of training examples needed to achieve good generalization grows polynomially
with the size of the network, but deep networks are trained with fewer data than the number of parameters N «< D

= Another key property of a network architecture:
Ability to produce “good representation of the data™

_|—> Representation: any function of the input data that is useful for a task and a optimal one can be quantified by
information-theoretic and complexity
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1. Introduction

Figure 1: lllustration of a neural network with 4 inputs, 5 hidden layers and 2 outputs

Input Hidden Output
layer layer layer

Source: SOATTO, S; GIRYES, R;
BRUNA, J; VIDAL, R.
Mathematics of Deep Learning. [1]



1. Introduction

1 1.3 Approach for techniques and Mathematical Methods

= For complex data tasks, data may be corrupted by ‘nuisances’ - One goal it to make the representation invariant to

‘nuisances’

= In general, optimal representations for a task can be defined as sufficient statistics which are minimal and invariant to

nuisance variability to future tests.

= Optimization Properties:

Classical approach to training neural network = Minimize the loss using backpropagation (Gradient Descent Method,

Stochastic, applied to neural networks).

1 SGD (Stochastic Gradient Descent) approximates the gradient for massive datasets.
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2. Mathematical Approach

1 2.1 How we can use Mathematics in Deep Learning?

= Linear Algebra, Probability/Statistics and Optimization are the mathematical pillars of Machine Learning.
= Goal: Constructing a function which can classify the training data correctly, so it can generalize to unseen test data [2]
= The inputs of the Function F are vectors and matrices.

= For the situation of identifying handwritten digits, each input sample will be an image - a matrix of pixels. So, each
one of the images will be classified as a number from 0 to 9 [2].

= Assign weights to different pixels in the image to create the function.

= However, the key challenge is to choose weights so that the function assigns the correct output.
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2. Mathematical Approach

1 2.2 Building a Function

= The inputs are the samples v and the outputs are the computed classification w = F(v) [2];
= Simplest linear functions would be the linear: w = Av, the entries of the matrix A are the weights to be learned;
= |t is also common to encounter the bias vector b, so as the function may be defined: F(v) = Av+ b (Affine);

= Since linearity is very limiting requirement, other functions were used to establish non-linearity: sigmoidal
functions with S — shaped graphs - A(S(Bv));

= After, it was verified that curved logistic functions S could be replaced by the ramp function ReLU(x) = max(0, x);

= Functions of deep learning have the form F(v) = L(R (L (R( . (Lv))))

— Composition of Af fine functions Lv = Av + b
with non — linear functions R — act on each component of the vector Lv

= The matrices A and the bias vector b are the weights in the learning function.
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2. Mathematical Approach

1 2.2 Building a Function

= F(x,v) — depends on the input v and the weights x

=The outputs v; = ReLU(A{(v) + b) from the first step produce the first hidden layer in the neural net.
= Beginning: input layer v

= Ending: output layer w = F(v)

=Affine part: L, (v,_1) = A, Vy_1 + by Of each step uses the computed weight A, and by,

1 2.3 Results and Loss Function

= Choose weights A;, and b;, to minimize the total loss over all the training examples: the total loss the sum of each
individual loss.

= The loss function for least squares has the form:||F,,y — true output| |2
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2. Mathematical Approach

1 2.4 Optimization: The goal is to minimize a Function F (x4, ....., x,,), where Derivate =
zero at the minimum point x':

\ oF
= So we have n equations = 0, for nunknows x'y, ..., x',,
l

= There are conditions the vector x must satisfy: These constraints could be equations Ax = b, x = 0. The constraints
enter in the equation through Lagrange Multipliers A4, .... 4,,.

= Expression argmin: argmin F(x) = value(s) of x where F reaches its minimum

= Important equations:

i dF 1 d?F
One Function F F(x + Ax) ~ F(x) + Ax T (x) + (3) (Ax)? 5 (1) (1)

One Variable x

= The Function will be convex, its slope increase and its graph bends upward, when the second derivative of
2
F(x) is positive: % >0
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2. Mathematical Approach

One Function  F(x + Ax) ~ F(x) + (Ax)TVF + (5) (A0)TH(Ax)  (2)

Variables x, to x,,

= Second derivate matrix H is positive definite,

L F is a strictly convex function: it is placed above its tangents
1 2.5 Definition of convexity
= A convex function F has a minimum at x’ if f = VF(x") = 0;

= Looking at all points px + (1 — p)y between x and y, so the graph of F stays on or goes below a straight line
graph.

=Fisconvex: F(px+ (1 —p)y) <pF(x)+ (1 —p)F(y) for0<p<1 (3)
= Then the graph of F goes below the chord that connects the point P; = (x, F(x)) to P, = (y,F(y)) and stays

above its tanient lines.
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2. Mathematical Approach

Figure 2: A Convex FunCtion F iS the Figure 3: Two convex sets in ]Rz
maximum of its all tangent functions

. Y
linear F:
convex [ 3
K .
linear F3
linear F 1
Source: STRANG, G. Linear Algebra and Source: STRANG, G. Linear Algebra and
Learning from Data, Massachusetts Learning from Data, Massachusetts Institute of

Institute of Technology [2] Technology [2]
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2. Mathematical Approach

1 2.5 Definition of convexity

= The maximum of 2 or more linear functions is rarely linear, but the maximum F(x) of 2 or more convex F;(x) is always convex.

= Forany z = px + (1 — p)y, between x and y, each function F;:

Fi(z) < pFi(x) + (1 = p)F;(y) < pF(x) + (1 = p)F(y) 4)
which is true for each i

= Then F(z) = maxF;(x) < pF(x) + (1 —p)F(y)
2
= An ordinary Function f(x) is convex if % > 0. The extension of n variables demands for the n x n matrix H (x) of second derivates.

= If F(x)is a smoth function, so there is a good test for convexity:
F(xq, oo X,,) is convex if and only if its second derivative matrix H (x) is positive semidefinite at all x.
The function F is strictly convex if H (x)is positive definite at all x

o
ax% ax1x2
H@ =| g2p  2F )

Ox2x1  0x3
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3. Mathematical Notation

O 3.1 Symbols and Sets for DNNs

= Deep Networks are a hierarchical model where each layer applies a linear transformation + nonlinearity to
the preceding layer

= LetX € RV*D: the input data, where each row of X is D-dimensional data point and N is the number of
training examples

= Let WK e R%*-1*%k: matrix representing a linear transformation applied to the output of layer k — 1
= X._, € RV*dk-1: the output of layer k — 1
= X,_, Wk e RN*dk: d,- dimensional representation at layer k

= Each column of W* represent a convolution with some filter (CNNs)



AO CARLOS

ICMCS
S HBS

3. Mathematical Notation

13.1 Symbols and Sets for DNNs

= Let ¢;: R — R to be a nonlinear activation function
* @) = tanh(x)
© =0 +e™)7!
* @, = max{0,x}
= This nonlinearity is applied to each entry of the X,_;W¥ to generate the k., layer of the neural network as:
X = 0K W")
= The output of the network is given by:
DX, W1, ..., W5) = @0 (@1 (- 02 (0 XWH W) WYy F)

— @ is matrix with dimensions N x C, C = dj, is the dimension of the output of the network, which is the
number of classes for a classification task
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3. Mathematical Notation

Figure 4: Example of critical points of non-convex function
(a,c): Plateaus; (b,d): Global Minima; (e,g): Local Maxima; (f,h): Local Minima

Source: SOATTO, S; GIRYES, R; BRUNA, J; VIDAL, R. Mathematics of Deep Learning. [1]
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3. Mathematical Notation

! 3.2 Global Optimality

= Learning the parameters W = {W¥}X_, of deep network from N training examples (X, Y).

= Arow of X € RV*D represents a data point in R? ;

= Arow of Y € {0,1}"*C represents the membership of each data point to one out of C classes:
= Y= 1if j,, row of X belongs to class ¢ € {1, ....,C} or ¥;. = 0 in the opposite case;

* The problem of learning the network weights W could be stated as follows:

min 1(Y, (X, W?,..,WK)) + 20(W?, ... wk), (WHE_, (6)
= [(Y, @) is the loss function that measures the agreement between the predicted output @ and the true output Y;

= O is a regularization function to prevent overfitting, ©® = Z’,§=1| |W""||,2:

= A > 0is a balancing parameter.
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4. Results and Discussion

1 4.1 Non-convexity in neural network training

= The previous optimization problem is non-convex due to the map ®(X, W), which is a non-convex function of W, due to

the product of WX variables and the nonlinearities .

= For non-convex problems, the set of critical points includes not only the global minima but also local minima, local

maxima, saddle points and saddle plateau.

— model formulation + implementation details( inicialization of the model and optimization algorithm)

= Dealing with non-convexity in deep learning requires initialization of the networks weights at random and update these

weights with local descent , check if the training error is decreasing fast and if not, choose another inicialization.
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4. Results and Discussion
1 4.2 Optimality for DNNS with single hidden layer

= |If the size of the network is large enough and non-linearity is the ReLU , many weights are zero, occurs a phenomenon
known as dead neurons, improving the classification performance.

= Later work also discovered that for neural networks with a single hidden layer, if the number of neurons in the hidden
layer is not fixed but fit to the data, so the process of training a globally optimal neural network is analogous to
selecting a finite number of hidden units from a potentially infinite dimensional space of all possible hidden units.

= The optimization problem is stated as follows, which the output is reckoned as the weighted sum of the selected
hidden units:

minl(Y, > h(Xowy) + Alwlly )

= h;(X) represents one of all possible hidden unit activation due to the training data X from an infinite dimensional
space h;(X) e H



4. Results and Discussion

1 4.2 Optimality for DNNS with single hidden layer

= The primary difficult is how to select the appropriate hidden linear units because H is an infinite dimensional space.

= However from gradient boosting, is possible to show that it can be globally optimized by sequentially adding hidden
units to the network until one can no longer find a hidden unit whose addition will decrease the objective function.

! 4.3 Global Optimality for positively homogeneous networks

= Some authors proposed by considering certain assumptions, the critical point of a high-dimensional optimization is
more likely a saddle point rather than a local minimizer.

= Avoiding saddle points is the main challenge in high-dimensional non-convex optimization.

= Besides, under some assumptions on the distribution of the training data and network parameters, other authors show
that with the increasing number of hidden units in a network, the distribution of local minima becomes concentrated in
a small intervals of objective function values near the global optimum.

= Generally the conditions for non-convex optimization problems have an approach considering all critical points to be
either global minimizers or saddle points/plateaus.
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4. Results and Discussion
1 4.4 Geometric Stability

= Mathematically characterize its approach: define the class of regression and classification tasks for which they are
predesigned to perform well.

= For Computer Vision tasks, CNNs provide a fundamental inductive idea of the origin of successful deep learning
vision models.

1 4.4.1 Framework to understand: Geometric Stability

= Let Q =[0,1]¢ = R< be a compact d —dimensional Euclidean Domain on which square-integrable functions X €
L% () are defined : Images can be thought as functions on the unit square Q = [0,1]?

Supervised learning task, an unknown function f: L2()— Y on a training set:

{X;€ L*(0),Y; = f(XD}i e (8)

= Target Space Y is discrete in a standard classification setup, where C = |Y]|
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4. Results and Discussion

1 4.4.2 Geometric Properties
= In computer vision and speech analysis tasks, the unknown function f satisfies the following crucial assumptions:

1. Stationarity: Considering a Translation Operator

T,X(u) =X(u—v),u,v € Q (9)

= Acts on functions X € L2(Q). It can be supposed the function to be invariant with respect to translations. In the
object classification tasks, f(T,X) = f(X), forany X € L?(Q) andv € Q

= Or it can also be assumed equivariant: f(T,X) = T,,f (X), well-defined when the output of the model is a space in
which translations can act upon (problems of object localization).

2. Local deformations and scale separations

= L, is deformation where 7: Q — Q is smooth vector field acts on L?(Q) as £, X (u) = X (u — r(u)) (10)
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4. Results and Discussion

= Deformations can model local translations, changes in viewpoint and rotations.

= Tasks in computer vision are not only translation invariant, but also stable with respect to local deformations.
Therefore in tasks which are translation invariant:

IF(LX) = FXOl = |IVel] (D)

= Forall X and , ||VT|| measures the smoothness of a deformation field. So the quantity predicted does not change
much if the input image is slightly deformed.

= For tasks which are translation equivariant:

|f(LTX) - L‘Ef(X)l ~ ||VT|| (12)

= That is a strong property since the space of local deformations has high dimensionality, order of R?, when discretize
images with D pixels, opposed to d — dimensional translation group, where d = 2 dimensions for images.
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