
Singularities in Deep Neural Networks:

A Brief Discussion about Mathematics of
Deep Learning

FAPESP SPRINT Project

Title: Applications of Singularity Theory on Deep Neural Networks

Scientific Research Student: Alan Gonelli Miranda (INCTMat/CNPq
fellowship)

ICMC coordinator: Raimundo N. Araújo dos Santos (SMA-ICMC)

i-PRoBe Lab / MSU coordinator: Arun Ross (MSU)

October 28𝑡ℎ, 2020

11

1. Introduction

❑1.1 Reasons for using deep networks

▪ Increase in performance of recognition systems due to the introduction of deep architectures for representation learning

and classification;

▪ Crucial Properties of Deep Networks:

Larger number of layers as compared to classical networks;

Architectural modifications – rectified linear activations (ReLUs);

Availability of massive datasets: ImageNet + efficient GPU computing hardware;

▪ Deeper architectures capture better invariant properties of the data comparing to shallow networks;

▪Ability to generalize from a small number of training examples.

2

1. Introduction

3

❑ 1.2 Properties of Deep Neural Networks

▪ Design of Deep Neural Networks: Approximate arbitrary functions of the input

Neural Networks with a single hidden layer and sigmoid activations => universal function approximators

▪ Statistical Learning Theory: Number of training examples needed to achieve good generalization grows polynomially

with the size of the network, but deep networks are trained with fewer data than the number of parameters 𝑁 ≪ 𝐷

▪ Another key property of a network architecture:

Ability to produce ‘‘good representation of the data’’

Representation: any function of the input data that is useful for a task and a optimal one can be quantified by

information-theoretic and complexity

1. Introduction

4

Figure 1: Illustration of a neural network with 4 inputs, 5 hidden layers and 2 outputs

Source: SOATTO, S; GIRYES, R;

BRUNA, J; VIDAL, R.

Mathematics of Deep Learning. [1]

1. Introduction

❑ 1.3 Approach for techniques and Mathematical Methods

▪ For complex data tasks, data may be corrupted by ‘nuisances’ -→ One goal it to make the representation invariant to

‘nuisances’

▪ In general, optimal representations for a task can be defined as sufficient statistics which are minimal and invariant to

nuisance variability to future tests.

▪ Optimization Properties:

Classical approach to training neural network → Minimize the loss using backpropagation (Gradient Descent Method,

Stochastic, applied to neural networks).

SGD (Stochastic Gradient Descent) approximates the gradient for massive datasets.

5

6

❑ 2.1 How we can use Mathematics in Deep Learning?

▪ Linear Algebra, Probability/Statistics and Optimization are the mathematical pillars of Machine Learning.

▪ Goal: Constructing a function which can classify the training data correctly, so it can generalize to unseen test data [2]

▪ The inputs of the Function 𝐹 are vectors and matrices.

▪ For the situation of identifying handwritten digits, each input sample will be an image - a matrix of pixels. So, each

one of the images will be classified as a number from 0 to 9 [2].

▪Assign weights to different pixels in the image to create the function.

▪ However, the key challenge is to choose weights so that the function assigns the correct output.

2. Mathematical Approach

2. Mathematical Approach

❑ 2.2 Building a Function

▪ The inputs are the samples 𝑣 and the outputs are the computed classification 𝑤 = 𝐹 𝑣 [2];

▪ Simplest linear functions would be the linear: 𝑤 = 𝐴𝑣, the entries of the matrix 𝑨 are the weights to be learned;

▪ It is also common to encounter the bias vector 𝒃, so as the function may be defined: 𝐹 𝑣 = 𝐴𝑣 + 𝑏 (𝐴𝑓𝑓𝑖𝑛𝑒);

▪ Since linearity is very limiting requirement, other functions were used to establish non-linearity: sigmoidal

functions with 𝑆 − 𝑠ℎ𝑎𝑝𝑒𝑑 𝑔𝑟𝑎𝑝ℎ𝑠 → 𝐴 𝑆 𝐵𝑣 ;

▪After, it was verified that curved logistic functions 𝑆 could be replaced by the ramp function 𝑹𝒆𝑳𝑼 𝒙 = 𝐦𝐚𝐱(𝟎, 𝒙);

▪ Functions of deep learning have the form 𝐹 𝑣 = 𝐿(𝑅 𝐿 𝑅 … . 𝐿𝑣

→ 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴𝑓𝑓𝑖𝑛𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝐿𝑣 = 𝐴𝑣 + 𝑏
𝑤𝑖𝑡ℎ 𝑛𝑜𝑛 − 𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑅 → 𝑎𝑐𝑡 𝑜𝑛 𝑒𝑎𝑐ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝐿𝑣

▪ The matrices 𝑨 and the bias vector 𝒃 are the weights in the learning function.

7

88 8

❑ 2.2 Building a Function

▪ 𝐹 𝑥, 𝑣 → 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑣 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑥

▪The outputs 𝑣1 = 𝑅𝑒𝐿𝑈(𝐴1 𝑣 + 𝑏) from the first step produce the first hidden layer in the neural net.

▪ Beginning: input layer 𝑣

▪ Ending: output layer 𝑤 = 𝐹 𝑣

▪Affine part: 𝐿𝑘 𝑣𝑘−1 = 𝐴𝑘𝑣𝑘−1 + 𝑏𝑘 of each step uses the computed weight 𝐴𝑘 𝑎𝑛𝑑 𝑏𝑘

❑ 2.3 Results and Loss Function

▪ Choose weights 𝐴𝑘 𝑎𝑛𝑑 𝑏𝑘 to minimize the total loss over all the training examples: the total loss the sum of each

individual loss.

▪ The loss function for least squares has the form:||𝐹(𝑣) − 𝑡𝑟𝑢𝑒 𝑜𝑢𝑡𝑝𝑢𝑡||2

2. Mathematical Approach

❑ 2.4 Optimization: The goal is to minimize a Function 𝐹 𝑥1, … . . , 𝑥𝑛 , 𝑤ℎ𝑒𝑟𝑒 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑒 =
𝑧𝑒𝑟𝑜 𝑎𝑡 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑝𝑜𝑖𝑛𝑡 𝑥′:

▪ So we have 𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠
𝜕𝐹

𝜕𝑥𝑖
= 0, 𝑓𝑜𝑟 𝑛 𝑢𝑛𝑘𝑛𝑜𝑤𝑠 𝑥′1, … , 𝑥′𝑛

▪ There are conditions the vector 𝒙 must satisfy: These constraints could be equations 𝑨𝒙 = 𝒃, 𝑥 ≥ 0. The constraints
enter in the equation through Lagrange Multipliers 𝜆1, … . 𝜆𝑚.

▪ Expression argmin: 𝑎𝑟𝑔𝑚𝑖𝑛 𝐹 𝑥 = 𝑣𝑎𝑙𝑢𝑒 𝑠 𝑜𝑓 𝑥 𝑤ℎ𝑒𝑟𝑒 𝐹 𝑟𝑒𝑎𝑐ℎ𝑒𝑠 𝑖𝑡𝑠 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

▪ Important equations:

One Function 𝐹 𝐹 𝑥 + Δ𝑥 ≈ 𝐹 𝑥 + ∆𝑥
𝑑𝐹

𝑑𝑥
𝑥 +

1

2
∆𝑥 2 𝑑

2𝐹

𝑑𝑥2
(𝑥) (1)

One Variable 𝑥

▪ The Function will be convex, its slope increase and its graph bends upward, when the second derivative of

𝐹 𝑥 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒:
𝑑2𝐹

𝑑𝑥2
> 0

9

2. Mathematical Approach

2. Mathematical Approach

One Function 𝐹 𝑥 + ∆𝑥 ≈ 𝐹 𝑥 + ∆𝑥 𝑇∇𝐹 +
1

2
∆𝑥 𝑇𝐻(∆𝑥) (2)

Variables 𝑥1 𝑡𝑜 𝑥𝑛

▪ Second derivate matrix Η is positive definite,

𝐹 𝑖𝑠 𝑎 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑐𝑜𝑛𝑣𝑒𝑥 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝐢𝐭 𝐢𝐬 𝐩𝐥𝐚𝐜𝐞𝐝 𝐚𝐛𝐨𝐯𝐞 𝐢𝐭𝐬 𝐭𝐚𝐧𝐠𝐞𝐧𝐭𝐬

❑ 2.5 Definition of convexity

▪A convex function 𝐹 has a minimum at x’ if 𝑓 = ∇𝐹 𝑥′ = 0;

▪ Looking at all points 𝑝𝑥 + 1 − 𝑝 𝑦 between 𝑥 and 𝑦, so the graph of 𝐹 stays on or goes below a straight line
graph.

▪ F is convex: 𝐹 𝑝𝑥 + 1 − 𝑝 𝑦 ≤ 𝑝𝐹 𝑥 + 1 − 𝑝 𝐹 𝑦 𝑓𝑜𝑟 0 < 𝑝 < 1 (3)

▪ Then the graph of 𝐹 goes below the chord that connects the point 𝑃1 = 𝑥, 𝐹 𝑥 𝑡𝑜 𝑃2 = (𝑦, 𝐹 𝑦) and stays

above its tangent lines.

10

2. Mathematical Approach

11

Figure 2: A Convex Function F is the

maximum of its all tangent functions

Source: STRANG, G. Linear Algebra and

Learning from Data, Massachusetts

Institute of Technology [2]

Figure 3: Two convex sets in ℝ2

Source: STRANG, G. Linear Algebra and

Learning from Data, Massachusetts Institute of

Technology [2]

2. Mathematical Approach
❑ 2.5 Definition of convexity

▪ The maximum of 2 or more linear functions is rarely linear, but the maximum 𝑭 𝒙 of 2 or more convex 𝑭𝒊(𝒙) is always convex.

▪ For any 𝑧 = 𝑝𝑥 + 1 − 𝑝 𝑦, 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑥 𝑎𝑛𝑑 𝑦, each function 𝐹𝑖:

𝐹𝑖 𝑧 ≤ 𝑝𝐹𝑖 𝑥 + 1 − 𝑝 𝐹𝑖 𝑦 ≤ 𝑝𝐹 𝑥 + 1 − 𝑝 𝐹 𝑦 (4)
𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖

▪ Then 𝐹 𝑧 = max𝐹𝑖 𝑥 ≤ 𝑝𝐹 𝑥 + 1 − 𝑝 𝐹(𝑦)

▪ An ordinary Function 𝑓(𝑥) is convex if
𝑑2𝐹

𝑑𝑥2
≥ 0. The extension of 𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 demands for the 𝑛 𝑥 𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 ℋ(𝑥) of second derivates.

▪ If F x is a smoth function, so there is a good test for convexity:
𝐹 𝑥1, ……𝑥𝑛 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑥 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑖𝑡𝑠 𝑠𝑒𝑐𝑜𝑛𝑑 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 ℋ 𝑥 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑒𝑚𝑖𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 𝑎𝑡 𝑎𝑙𝑙 𝑥.

𝑇ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐹 𝑖𝑠 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑐𝑜𝑛𝑣𝑒𝑥 𝑖𝑓 ℋ 𝑥 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 𝑎𝑡 𝑎𝑙𝑙 𝑥

ℋ 𝑥 =

𝜕2𝐹

𝜕𝑥1
2

𝜕2𝐹

𝜕𝑥1𝑥2
…… . .

𝜕2𝐹
𝜕𝑥2𝑥1

𝜕2𝐹

𝜕𝑥2
2

…… .

…… . .

(5)

12

3. Mathematical Notation

13

❑ 3.1 Symbols and Sets for DNNs

▪ Deep Networks are a hierarchical model where each layer applies a linear transformation + nonlinearity to

the preceding layer

▪ Let 𝑋 ∈ ℝ𝑁 𝑥 𝐷: the input data, where each row of 𝑋 is 𝐷-dimensional data point and 𝑁 is the number of

training examples

▪ Let 𝑊𝑘 ∈ ℝ𝑑𝑘−1 𝑥 𝑑𝑘: matrix representing a linear transformation applied to the output of layer 𝑘 − 1

▪ 𝑋𝑘−1 ∈ ℝ𝑁 𝑥 𝑑𝑘−1: the output of layer 𝑘 − 1

▪ 𝑋𝑘−1𝑊
𝑘 ∈ ℝ𝑁 𝑥 𝑑𝑘: 𝑑𝑘- dimensional representation at layer 𝑘

▪ Each column of 𝑊𝑘 represent a convolution with some filter (CNNs)

3. Mathematical Notation

❑3.1 Symbols and Sets for DNNs

▪ Let 𝜑𝑘: ℝ → ℝ to be a nonlinear activation function

• 𝜑𝑘 = tanh 𝑥

• 𝜑𝑘 = 1 + 𝑒−𝑥 −1

• 𝜑𝑘 = max 0, 𝑥

▪ This nonlinearity is applied to each entry of the 𝑋𝑘−1𝑊
𝑘 to generate the 𝑘𝑡ℎ layer of the neural network as:

𝑋𝑘 = 𝜑𝑘(𝑋𝑘−1𝑊
𝑘)

▪ The output of the network is given by:

Φ 𝑋,𝑊1, … . ,𝑊𝑘 = 𝜑𝑘(𝜑𝑘−1(… . 𝜑2(𝜑1(𝑋𝑊
1)𝑊2)…𝑊𝑘−1)𝑊𝑘)

Φ is matrix with dimensions 𝑁 𝑥 𝐶, C = 𝑑𝑘 is the dimension of the output of the network, which is the
number of classes for a classification task

14

3. Mathematical Notation

15

Figure 4: Example of critical points of non-convex function

(a,c): Plateaus; (b,d): Global Minima; (e,g): Local Maxima; (f,h): Local Minima

Source: SOATTO, S; GIRYES, R; BRUNA, J; VIDAL, R. Mathematics of Deep Learning. [1]

3. Mathematical Notation

❑ 3.2 Global Optimality

▪ Learning the parameters 𝑊 = {𝑊𝑘}𝑘=1
𝐾 of deep network from 𝑁 training examples (𝑋, 𝑌).

▪A row of 𝑋 ∈ ℝ𝑁𝑥𝐷 represents a data point in ℝ𝐷 ;

▪A row of 𝑌 ∈ {0,1}𝑁𝑥𝐶 represents the membership of each data point to one out of 𝐶 classes:

▪ 𝑌𝑗𝑐= 1 if 𝑗𝑡ℎ row of 𝑋 belongs to class 𝑐 ∈ 1,… . , 𝐶 or 𝑌𝑗𝑐 = 0 in the opposite case;

▪ The problem of learning the network weights 𝑊 could be stated as follows:

min 𝑙 𝑌,Φ 𝑋,𝑊1, … ,𝑊𝑘 + 𝜆Θ 𝑊1, … . .𝑊𝑘 , {𝑊𝑘}𝑘=1
𝐾 (6)

▪ 𝑙 𝑌, Φ is the loss function that measures the agreement between the predicted output 𝜱 and the true output 𝒀;

▪ Θ is a regularization function to prevent overfitting, Θ = σ𝑘=1
𝐾 |𝑊𝑘 |𝐹

2

▪ 𝜆 > 0 is a balancing parameter.

16

4. Results and Discussion

❑ 4.1 Non-convexity in neural network training

▪ The previous optimization problem is non-convex due to the map Φ X,W , which is a non-convex function of W, due to

the product of Wk variables and the nonlinearities ψk.

▪ For non-convex problems, the set of critical points includes not only the global minima but also local minima, local

maxima, saddle points and saddle plateau.

→ 𝑚𝑜𝑑𝑒𝑙 𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 + 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑡𝑎𝑖𝑙𝑠(𝑖𝑛𝑖𝑐𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑎𝑛𝑑 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚)

▪ Dealing with non-convexity in deep learning requires initialization of the networks weights at random and update these

weights with local descent , check if the training error is decreasing fast and if not, choose another inicialization.

17

4. Results and Discussion

❑ 4.2 Optimality for DNNS with single hidden layer

▪ If the size of the network is large enough and non-linearity is the 𝑅𝑒𝐿𝑈 , many weights are 𝑧𝑒𝑟𝑜, occurs a phenomenon
known as 𝑑𝑒𝑎𝑑 𝑛𝑒𝑢𝑟𝑜𝑛𝑠, improving the classification performance.

▪ Later work also discovered that for neural networks with a single hidden layer, if the number of neurons in the hidden
layer is not fixed but fit to the data, so the process of training a globally optimal neural network is analogous to
selecting a finite number of hidden units from a potentially infinite dimensional space of all possible hidden units.

▪ The optimization problem is stated as follows, which the output is reckoned as the weighted sum of the selected
hidden units:

min 𝑙(𝑌,෍

𝑖

ℎ𝑖(𝑋)𝑤𝑖) + 𝜆| 𝑤 |1 (7)

▪ 𝒉𝒊 𝑿 represents one of all possible hidden unit activation due to the training data 𝑋 from an infinite dimensional
space ℎ𝑖 𝑋 ∈ ℋ

18

4. Results and Discussion

❑ 4.2 Optimality for DNNS with single hidden layer

▪ The primary difficult is how to select the appropriate hidden linear units because ℋ is an infinite dimensional space.

▪ However from gradient boosting, is possible to show that it can be globally optimized by sequentially adding hidden
units to the network until one can no longer find a hidden unit whose addition will decrease the objective function.

❑ 4.3 Global Optimality for positively homogeneous networks

▪ Some authors proposed by considering certain assumptions, the critical point of a high-dimensional optimization is
more likely a saddle point rather than a local minimizer.

▪ Avoiding saddle points is the main challenge in high-dimensional non-convex optimization.

▪ Besides, under some assumptions on the distribution of the training data and network parameters, other authors show
that with the increasing number of hidden units in a network, the distribution of local minima becomes concentrated in
a small intervals of objective function values near the global optimum.

▪ Generally the conditions for non-convex optimization problems have an approach considering all critical points to be
either global minimizers or saddle points/plateaus.

19

4. Results and Discussion
❑ 4.4 Geometric Stability

▪ Mathematically characterize its approach: define the class of regression and classification tasks for which they are
predesigned to perform well.

▪ For Computer Vision tasks, CNNs provide a fundamental inductive idea of the origin of successful deep learning
vision models.

❑ 4.4.1 Framework to understand: Geometric Stability

▪ Let Ω = 0,1 𝑑 ⊏ ℝ𝑑 be a compact 𝑑 −dimensional Euclidean Domain on which square-integrable functions 𝑋 ∈
𝐿2(Ω) are defined : Images can be thought as functions on the unit square Ω = 0,1 2

Supervised learning task, an unknown function 𝑓: 𝐿2(Ω)→ Υ on a training set:

{𝑋𝑖∈ 𝐿2 Ω , 𝑌𝑖 = 𝑓(𝑋𝑖)}𝑖 ∈ 𝐼 (8)

▪ Target Space Υ is discrete in a standard classification setup, where 𝐶 = |Υ|

20

4. Results and Discussion

21

❑ 4.4.2 Geometric Properties

▪ In computer vision and speech analysis tasks, the unknown function 𝑓 satisfies the following crucial assumptions:

1. Stationarity: Considering a Translation Operator

𝑇𝑣𝑋 𝑢 = 𝑋 𝑢 − 𝑣 , 𝑢, 𝑣 ∈ Ω (9)

▪Acts on functions 𝑋 ∈ 𝐿2 Ω . It can be supposed the function to be invariant with respect to translations. In the
object classification tasks, 𝑓 𝑇𝑣𝑋 = 𝑓(𝑋), for any 𝑋 ∈ 𝐿2 Ω and 𝑣 ∈ Ω

▪ Or it can also be assumed equivariant: 𝑓 𝑇𝑣𝑋 = 𝑇𝑣𝑓 𝑋 , well-defined when the output of the model is a space in
which translations can act upon (problems of object localization).

2. Local deformations and scale separations

▪ ℒ𝜏 is deformation where 𝜏: Ω → Ω is smooth vector field acts on 𝐿2(Ω) as ℒ𝜏𝑋 𝑢 = 𝑋 𝑢 − 𝜏 𝑢 (10)

4. Results and Discussion

22

▪ Deformations can model local translations, changes in viewpoint and rotations.

▪ Tasks in computer vision are not only translation invariant, but also stable with respect to local deformations.

Therefore in tasks which are translation invariant:

𝑓 𝐿𝜏𝑋 − 𝑓 𝑋 ≈ ∇𝜏 (11)

▪ For all 𝑋 and 𝜏, ∇𝜏 measures the smoothness of a deformation field. So the quantity predicted does not change

much if the input image is slightly deformed.

▪ For tasks which are translation equivariant:

𝑓 𝐿𝜏𝑋 − ℒ𝜏𝑓 𝑋 ≈ ∇𝜏 (12)

▪ That is a strong property since the space of local deformations has high dimensionality, order of ℝ𝐷, when discretize

images with 𝐷 pixels, opposed to 𝑑 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 translation group, where 𝑑 = 2 dimensions for images.

5. Bibliographic References

▪ [1] SOATTO, S; GIRYES, R; BRUNA, J; VIDAL, R. Mathematics of Deep Learning, 13 December
2017.

▪ [2] STRANG, G. Linear Algebra and Learning from Data, Massachusetts Institute of Technology,
Wellesley-Cambridge Press.

23

